Mitochondria-Derived Reactive Oxygen Species Play an Important Role in Doxorubicin-Induced Platelet Apoptosis
نویسندگان
چکیده
Doxorubicin (DOX) is an effective chemotherapeutic agent; however; its use is limited by some side effects; such as cardiotoxicity and thrombocytopenia. DOX-induced cardiotoxicity has been intensively investigated; however; DOX-induced thrombocytopenia has not been clearly elucidated. Here we show that DOX-induced mitochondria-mediated intrinsic apoptosis and glycoprotein (GP)Ibα shedding in platelets. DOX did not induce platelet activation; whereas; DOX obviously reduced adenosine diphosphate (ADP)- and thrombin-induced platelet aggregation; and impaired platelet adhesion on the von Willebrand factor (vWF) surface. In addition; we also show that DOX induced intracellular reactive oxygen species (ROS) production and mitochondrial ROS generation in a dose-dependent manner. The mitochondria-targeted ROS scavenger Mito-TEMPO blocked intracellular ROS and mitochondrial ROS generation. Furthermore; Mito-TEMPO reduced DOX-induced platelet apoptosis and GPIbα shedding. These data indicate that DOX induces platelet apoptosis; and impairs platelet function. Mitochondrial ROS play a pivotal role in DOX-induced platelet apoptosis and GPIbα shedding. Therefore; DOX-induced platelet apoptosis might contribute to DOX-triggered thrombocytopenia; and mitochondria-targeted ROS scavenger would have potential clinical utility in platelet-associated disorders involving mitochondrial oxidative damage.
منابع مشابه
Protective Effect of Captopril against Doxorubicin-Induced Oxidative Stress in Isolated Rat Liver Mitochondria
Doxorubicin (DOX) is an anthracycline antibiotic that has been used for a long time in therapy of an array of human malignancies either alone or in combination with other cytotoxic agents. The dose-dependent cardiotoxicity of DOX significantly limits its anticancer efficacies. Oxidative stress caused by enhanced production of reactive oxygen species is an important contributor to DOX mito...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملنقش استرس اکسیداتیو در تکثیر بیرویه و مرگ سلولی
Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...
متن کاملOver-expression of heat shock protein 27 attenuates doxorubicin-induced cardiac dysfunction in mice.
BACKGROUND Oxidative stress and myocyte apoptosis are thought to play an important role in the pathogenesis, progression and prognosis of heart failure (HF). Heat shock protein 27 (Hsp27) has been found to confer resistance to oxidative stress in cultured cells; however, the role of Hsp27 in in-vivo hearts remains to be determined. AIM To investigate the effects of Hsp27 over-expression on do...
متن کاملThe Role of Mitochondria-Derived Reactive Oxygen Species in Hyperthermia-Induced Platelet Apoptosis
A combination of hyperthermia with radiotherapy and chemotherapy for various solid tumors has been practiced clinically. However, hyperthermic therapy has side effects, such as thrombocytopenia. Up to now, the pathogenesis of hyperthermia-induced thrombocytopenia remains unclear. Previous studies have shown that hyperthermia induces platelet apoptosis. However, the signaling pathways and molecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015